Головна - Біль в очах
Побудувати графік x 5. Побудова графіків онлайн. Властивості функції $y=x3$

Виберемо на площині прямокутну систему координат і відкладатимемо на осі абсцис значення аргументу х, але в осі ординат - значення функції у = f(х).

Графіком функції y = f(x)називається безліч всіх точок, у яких абсциси належать області визначення функції, а ординати дорівнюють відповідним значенням функції.

Іншими словами, графік функції y = f(х) - це безліч усіх точок площини, координати х, уяких задовольняють співвідношення y = f(x).



На рис. 45 та 46 наведено графіки функцій у = 2х + 1і у = х 2 - 2х.

Строго кажучи, слід розрізняти графік функції (точне математичне визначення якого було дано вище) і накреслену криву, яка завжди дає лише більш-менш точний ескіз графіка (та й те, як правило, не лише графіка, а лише його частини, розташованого в кінцевій частини площини). Надалі, однак, ми зазвичай говоритимемо «графік», а не «ескіз графіка».

За допомогою графіка можна знаходити значення функції у точці. Саме, якщо точка х = аналежить області визначення функції y = f(x), то знаходження числа f(а)(тобто значення функції у точці х = а) слід вчинити так. Потрібно через крапку з абсцисою х = апровести пряму, паралельну осі ординат; ця пряма перетне графік функції y = f(x)в одній точці; ордината цієї точки і буде, з визначення графіка, дорівнює f(а)(Рис. 47).



Наприклад, для функції f(х) = х 2 - 2xз допомогою графіка (рис. 46) знаходимо f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 тощо.

Графік функції наочно ілюструє поведінку та властивості функції. Наприклад, із розгляду рис. 46 ясно, що функція у = х 2 - 2хприймає позитивні значення при х< 0 і при х > 2, Негативні - при 0< x < 2; наименьшее значение функция у = х 2 - 2хприймає за х = 1.

Для побудови графіка функції f(x)потрібно знайти всі точки площини, координати х,уяких задовольняють рівняння y = f(x). Найчастіше це зробити неможливо, оскільки таких точок нескінченно багато. Тому графік функції зображують приблизно з більшою або меншою точністю. Найпростішим є метод побудови графіка за кількома точками. Він у тому, що аргументу хнадають кінцеве число значень - скажімо, х 1 , х 2 , х 3, ..., х k і становлять таблицю, до якої входять вибрані значення функції.

Таблиця виглядає так:



Склавши таку таблицю, ми можемо намітити кілька точок графіка функції y = f(x). Потім, з'єднуючи ці точки плавною лінією, ми отримуємо приблизний вид графіка функції y = f(x).

Слід зазначити, що метод побудови графіка за кількома точками дуже ненадійний. Насправді поведінка графіка між наміченими точками та поведінка його поза відрізком між крайніми із взятих точок залишається невідомою.

Приклад 1. Для побудови графіка функції y = f(x)хтось склав таблицю значень аргументу та функції:




Відповідні п'ять точок показано на рис. 48.



На підставі розташування цих точок він зробив висновок, що графік функції є прямою (показану на рис. 48 пунктиром). Чи можна вважати цей висновок надійним? Якщо немає додаткових міркувань, що підтверджують цей висновок, його навряд можна вважати надійним. надійним.

Для обґрунтування свого твердження розглянемо функцію

.

Обчислення показують, що значення цієї функції в точках -2, -1, 0, 1, 2 описуються наведеною вище таблицею. Однак графік цієї функції не є прямою лінією (він показаний на рис. 49). Іншим прикладом може бути функція y = x + l + sinπx;її значення теж описуються наведеною вище таблицею.

Ці приклади показують, що у «чистому» вигляді метод побудови графіка за кількома точками ненадійний. Тому для побудови графіка заданої функції, як правило, надходять у такий спосіб. Спочатку вивчають властивості цієї функції, з допомогою яких можна побудувати ескіз графіка. Потім, обчислюючи значення функції кількох точках (вибір яких залежить від встановлених властивостей функції), знаходять відповідні точки графіка. І, нарешті, через побудовані точки проводять криву, використовуючи властивості цієї функції.

Деякі (найпростіші і найчастіше використовувані) властивості функцій, застосовувані перебування ескізу графіка, ми розглянемо пізніше, тепер розберемо деякі часто застосовувані методи побудови графіків.


Графік функції у = | f (x) |.

Часто доводиться будувати графік функції y = | f (x)|, де f(х) -задана функція. Нагадаємо, як це робиться. За визначенням абсолютної величини числа можна написати

Це означає, що графік функції y = | f (x) |можна отримати з графіка, функції y = f(x)наступним чином: всі точки графіка функції у = f(х), які мають ординати неотрицательные, слід залишити без зміни; далі, замість точок графіка функції y = f(x), що мають негативні координати, слід побудувати відповідні точки графіка функції у = -f(x)(тобто частина графіка функції
y = f(x), що лежить нижче осі х,слід симетрично відобразити щодо осі х).



приклад 2.Побудувати графік функції у = | х |.

Беремо графік функції у = х(рис. 50, а) та частина цього графіка при х< 0 (що лежить під віссю х) симетрично відбиваємо щодо осі х. В результаті ми отримуємо графік функції у = | х |(Рис. 50, б).

Приклад 3. Побудувати графік функції y = | x 2 - 2x |.


Спочатку побудуємо графік функції y = x 2 – 2x.Графік цієї функції - парабола, гілки якої спрямовані вгору, вершина параболи має координати (1; -1), її графік перетинає вісь абсцис у точках 0 та 2. На проміжку (0; 2) фукція набуває негативних значень, тому саме цю частину графіка симетрично відобразимо щодо осі абсцис. На малюнку 51 побудовано графік функції у = | х 2 -2х |, виходячи з графіка функції у = х 2 - 2x

Графік функції y = f(x) + g(x)

Розглянемо задачу побудови графіка функції y = f(x) + g(x).якщо задані графіки функцій y = f(x)і y = g(x).

Зауважимо, що область визначення функції y = |f(x) + g(х)| є безліч усіх тих значень х, для яких визначені обидві функції y = f(x) і у = g(х), тобто ця область визначення є перетином областей визначення, функцій f(x) і g(x).

Нехай крапки (х 0 , y 1) та (х 0, у 2) відповідно належать графікам функцій y = f(x)і y = g(х), Т. е. y 1 = f(x0), y2=g(х0).Тоді точка (x0;. y1 + y2) належить графіку функції у = f(х) + g(х)(бо f(х 0) + g(x 0) = y 1+y2),. причому будь-яка точка графіка функції y = f(x) + g(x)може бути отримана в такий спосіб. Отже, графік функції у = f(x) + g(x)можна отримати з графіків функцій y = f(x). і y = g(х)заміною кожної точки ( х n, у 1) графік функції y = f(x)точкою (х n, y 1 + y 2),де у 2 = g(x n), тобто зсувом кожної точки ( х n , у 1) графіка функції y = f(x)вздовж осі уна величину y 1 = g(х n). При цьому розглядаються лише такі точки х n для яких визначено обидві функції y = f(x)і y = g(x).

Такий метод побудови графіка функції y = f(x) + g(х) називається додаванням графіків функцій y = f(x)і y = g(x)

Приклад 4. На малюнку методом складання графіків побудовано графік функції
y = x + sinx.

При побудові графіка функції y = x + sinxми думали, що f(x) = x,а g(x) = sinx.Для побудови графіка функції виберемо крапки з aбцисами -1,5π, -, -0,5, 0, 0,5,, 1,5, 2. Значення f(x) = x, g(x) = sinx, y = x + sinxобчислимо у вибраних точках і результати помістимо у таблиці.


«Перетворення функцій» - Гойдалками. Зсув по осі угору. Увімкни повну гучність – збільшиш a (амплітуду) коливань повітря. Зсув по осі х ліворуч. Завдання уроку. 3 бали. Музикою. Побудуйте графік функції та визначте D(f), E(f) та T: Стиснення по осі x. Зсув по осі униз. Додай червоного кольору на палітру – зменшиш k (частоту) електромагнітних коливань.

«Функції кількох змінних» – похідні вищих порядків. Функцію двох змінних можна зобразити графічно. Диференціальне та інтегральне обчислення. Внутрішні та граничні точки. Визначення межі функції 2-х змінних. Курс математичного аналізу. Берман. Межа функції 2-х змінних. Графік функції. Теорема. Обмежена область.

«Поняття функції» - способи побудови графіків квадратичної функції. Вивчення різних методів завдання функції – важливий методичний прийом. Особливості вивчення квадратичної функції. Генетичне трактування поняття «функція». Функції та графіки у шкільному курсі математики. Уявлення про лінійну функцію виділяється при побудові графіка деякої лінійної функції.

"Тема Функція" - Аналіз. Потрібно з'ясувати не те, що учень не знає, а те, що він знає. Закладення основ для успішної здачі ЄДІ та вступ до ВНЗ. Синтез. Якщо учні працюють по-різному, то й вчитель має з ними працювати по-різному. Аналогія. Узагальнення. Розподіл завдань ЄДІ з основних блоків змісту шкільного курсу математики.

"Перетворення графіків функцій" - Повторити види перетворень графіків. Порівняти кожному графіку функцію. симетрія. Ціль уроку: Побудова графіків складних функцій. Розглянемо приклади перетворень, пояснимо кожен вид перетворення. Перетворення графіків функцій. Розтягування. Закріпити побудову графіків функцій з допомогою перетворень графіків елементарних функций.

"Графіки функцій" - Функція виду. Область значень функції – всі значення залежної змінної у. Графіком функції є парабола. Графіком функції є кубічна парабола. Графіком функції є гіпербола. Область визначення та область значень функції. Кожну пряму співвіднесіть з її рівнянням: Область визначення функції – значення незалежної змінної х.

Урок на тему: "Графік та властивості функції $y=x^3$. Приклади побудови графіків"

Додаткові матеріали
Шановні користувачі, не забувайте залишати свої коментарі, відгуки, побажання. Усі матеріали перевірені антивірусною програмою.

Навчальні посібники та тренажери в інтернет-магазині "Інтеграл" для 7 класу
Електронний навчальний посібник для 7 класу "Алгебра за 10 хвилин"
Освітній комплекс 1С "Алгебра, 7-9 класи"

Властивості функції $y=x^3$

Давайте опишемо характеристики цієї функції:

1. x - незалежна змінна, y - залежна змінна.

2. Область визначення: очевидно, що з будь-якого значення аргументу (x) можна визначити значення функції (y). Відповідно, область визначення цієї функції – вся числова пряма.

3. Область значень: може бути будь-яким. Відповідно, область значень – також уся числова пряма.

4. Якщо x=0, то й y=0.

Графік функції $y=x^3$

1. Складемо таблицю значень:


2. Для позитивних значень x графік функції $ y = x ^ 3 $ дуже схожий на параболу, гілки якої більш "притиснуті" до осі OY.

3. Оскільки негативних значень x функція $y=x^3$ має протилежні значення, то графік функції симетричний щодо початку координат.

Тепер відзначимо точки на координатній площині та побудуємо графік (див. рис. 1).


Ця крива називається кубічною параболою.

Приклади

I. На невеликому кораблі повністю закінчилася прісна вода. Необхідно привезти достатню кількість води із міста. Вода замовляється заздалегідь і оплачується за повний куб, навіть якщо залити трохи менше. Скільки кубів треба замовити, щоб не переплачувати за зайвий куб і повністю заповнити цистерну? Відомо, що цистерна має однакові довжину, ширину та висоту, які дорівнюють 1,5 м. Розв'яжемо це завдання, не виконуючи обчислень.

Рішення:

1. Побудуємо графік функції $ y = x ^ 3 $.
2. Знайдемо точку А, координата x, якою дорівнює 1,5. Ми бачимо, що координата функції знаходиться між значеннями 3 та 4 (див. мал. 2). Отже треба замовити 4 куби.

Побудувати функцію

Ми пропонуємо вашій увазі сервіс з потроєння графіків функцій онлайн, всі права на який належать компанії Desmos. Для введення функцій скористайтесь лівою колонкою. Можна вводити вручну або за допомогою віртуальної клавіатури внизу вікна. Для збільшення вікна з графіком можна приховати як ліву колонку, і віртуальну клавіатуру.

Переваги побудови графіків онлайн

  • Візуальне відображення функцій, що вводяться
  • Побудова дуже складних графіків
  • Побудова графіків, заданих неявно (наприклад, еліпс x^2/9+y^2/16=1)
  • Можливість зберігати графіки та отримувати на них посилання, яке стає доступним для всіх в інтернеті
  • Управління масштабом, кольором ліній
  • Можливість побудови графіків за точками, використання констант
  • Побудова одночасно кількох графіків функцій
  • Побудова графіків у полярній системі координат (використовуйте r та θ(\theta))

З нами легко в режимі онлайн будувати графіки різної складності. Побудова провадиться миттєво. Сервіс затребуваний для знаходження точок перетину функцій, зображення графіків для подальшого їх переміщення в Word документ як ілюстрацій при вирішенні завдань, для аналізу поведінкових особливостей графіків функцій. Оптимальним браузером для роботи з графіками на цій сторінці є Google Chrome. У разі використання інших браузерів коректність роботи не гарантується.

Побудова графіків функцій, що містять модулі, зазвичай викликає чималі труднощі у школярів. Проте все не так погано. Досить запам'ятати кілька алгоритмів вирішення таких завдань, і ви зможете легко побудувати графік навіть самій на вигляд складної функції. Давайте розберемося, що це за алгоритми.

1. Побудова графіка функції y = | f (x) |

Зауважимо, що безліч значень функцій y = | f (x) | : y ≥ 0. Таким чином, графіки таких функцій завжди розташовані повністю у верхній півплощині.

Побудова графіка функції y = | f (x) | складається з наступних простих чотирьох етапів.

1) Побудувати акуратно та уважно графік функції y = f(x).

2) Залишити без зміни всі точки графіка, які знаходяться вище за осі 0x або на ній.

3) Частину графіка, що лежить нижче за осю 0x, відобразити симетрично щодо осі 0x.

Приклад 1. Зобразити графік функції y = | x 2 - 4x + 3 |

1) Будуємо графік функції y = x 2 – 4x + 3. Вочевидь, що графік цієї функції – парабола. Знайдемо координати всіх точок перетину параболи з осями координат та координати вершини параболи.

x 2 - 4x + 3 = 0.

x1=3, x2=1.

Отже, парабола перетинає вісь 0x у точках (3, 0) та (1, 0).

y = 0 2 - 4 · 0 + 3 = 3.

Отже, парабола перетинає вісь 0y у точці (0, 3).

Координати вершини параболи:

x в = -(-4/2) = 2, y в = 2 2 - 4 · 2 + 3 = -1.

Отже, точка (2, -1) є вершиною даної параболи.

Малюємо параболу, використовуючи отримані дані (Рис. 1)

2) Частину графіка, що лежить нижче за осю 0x, відображаємо симетрично щодо осі 0x.

3) Отримуємо графік вихідної функції ( Рис. 2, зображено пунктиром).

2. Побудова графіка функції y = f(|x|)

Зауважимо, що функції виду y = f(|x|) є парними:

y(-x) = f(|-x|) = f(|x|) = y(x). Значить графіки таких функцій симетричні щодо осі 0y.

Побудова графіка функції y = f(|x|) складається з наступного нескладного ланцюжка процесів.

1) Побудувати графік функції y = f (x).

2) Залишити ту частину графіка, для якої x ≥ 0, тобто частина графіка, розташовану у правій півплощині.

3) Відобразити вказану у пункті (2) частину графіка симетрично осі 0y.

4) Як остаточний графік виділити об'єднання кривих, отриманих у пунктах (2) і (3).

Приклад 2. Зобразити графік функції y = x 2 - 4 · | + 3

Оскільки x 2 = |x| 2 , то вихідну функцію можна переписати у такому вигляді: y = | x | 2 - 4 · | x | + 3. А тепер можемо застосовувати запропонований вище алгоритм.

1) Будуємо акуратно та уважно графік функції y = x 2 – 4 · x + 3 (див. також Рис. 1).

2) Залишаємо ту частину графіка, для якої x ≥ 0, тобто частина графіка, розташовану у правій півплощині.

3) Відображаємо праву частину графіка симетрично до осі 0y.

(Рис. 3).

Приклад 3. Зобразити графік функції y = log 2 | x |

Застосовуємо схему, дану вище.

1) Будуємо графік функції y = log 2 x (Рис. 4).

3. Побудова графіка функції y = | f ( | x |) |

Зауважимо, що функції виду y = | f ( | x |) | теж є парними. Справді, y(-x) = y = |f(|-x|)| = y = | f (| x |) | = y(x), і тому їх графіки симетричні щодо осі 0y. Безліч значень таких функцій: y 0. Отже, графіки таких функцій розташовані повністю у верхній півплощині.

Щоб побудувати графік функції y = |f(|x|)|, необхідно:

1) Побудувати акуратно графік функції y = f(|x|).

2) Залишити без змін ту частину графіка, яка знаходиться вище за осю 0x або на ній.

3) Частину графіка, розташовану нижче за осю 0x, відобразити симетрично щодо осі 0x.

4) Як остаточний графік виділити об'єднання кривих, отриманих у пунктах (2) і (3).

Приклад 4. Зобразити графік функції y = | -x 2 + 2 | x | - 1 |.

1) Зауважимо, що x 2 = | 2 . Значить замість вихідної функції y = -x 2 + 2|x| - 1

можна використовувати функцію y=-|x| 2+2|x| - 1, тому що їхні графіки збігаються.

Будуємо графік y = - | x | 2+2|x| - 1. Для цього застосовуємо алгоритм 2.

a) Будуємо графік функції y = -x 2 + 2x - 1 (Рис. 6).

b) Залишаємо ту частину графіка, яка розташована у правій півплощині.

c) Відображаємо отриману частину графіка симетрично до осі 0y.

d) Отриманий графік зображений на малюнку пунктиром (Мал. 7).

2) Вище осі 0х точок немає, точки на осі 0х залишаємо без зміни.

3) Частину графіка, розташовану нижче за осю 0x, відображаємо симетрично щодо 0x.

4) Отриманий графік зображено на малюнку пунктиром (Рис. 8).

Приклад 5. Побудувати графік функції y = | (2 | x | - 4) / ( | x | + 3) |

1) Спочатку необхідно побудувати графік функції y = (2 | x | - 4) / ( | x | + 3). Для цього повертаємось до алгоритму 2.

a) Акуратно будуємо графік функції y = (2x - 4) / (x + 3) (рис. 9).

Зауважимо, що дана функція є дробово-лінійною та її графік є гіперболою. Для побудови кривої спочатку необхідно визначити асимптоти графіка. Горизонтальна – y = 2/1 (відношення коефіцієнтів при x у чисельнику та знаменнику дробу), вертикальна – x = -3.

2) Ту частину графіка, яка знаходиться вище осі 0x або на ній, залишимо без змін.

3) Частину графіка, розташовану нижче за осю 0x, відобразимо симетрично щодо 0x.

4) Остаточний графік зображено малюнку (Рис. 11).

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

 


Читайте:



Сепаратистський Донбас: політичні угруповання "ДНР"

Сепаратистський Донбас: політичні угруповання

Клас 11 Тема 12. Макросфера 1. «Донбас – моя Батьківщина». Мікросфера «Я – мешканець Донбасу» Тема уроку. Тип уроку. Оглядове...

Програмні заяви: що пропонують виборцям кандидати у президенти Росії

Програмні заяви: що пропонують виборцям кандидати у президенти Росії

Ось ті основні заходи, які пропонують народно-патріотичні сили країни: Ми готові поставити багатства Росії, її природні, промислові та...

Шекспір ​​"Гамлет": опис, герої, аналіз твору

Шекспір

Гамлет - одна з найбільших шекспірівських трагедій. Вічні питання, порушені у тексті, хвилюють людство досі. Любовні колізії, теми,...

Сюжет та історія створення трагедії В

Сюжет та історія створення трагедії В

Сюжет та історія створення трагедії В. Шекспіра «Гамлет» «Гамлет» стоїть окремо навіть у геніальній спадщині Шекспіра. Головний герой п'єси - людина.

feed-image RSS